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a: X=Ph, Y=H; b: X=H, Y=Ph 6

We report the first clear cases of thermal fragmentation of
acyclic dialkoxycarbenes in solution to radical pairs consisting Scheme 2
of methoxycarbonyl and allylic radicals, Scheme 1, in which both

the carbenes and the radicals could be trapped. MeO.__OAc + MO O
2-Methoxy-2-allyloxy-5,5-dimethyA3-1,3,4-oxadiazoline2g, o><,r;1 + HOWY e, o><,ry\)'(/\/+ HOAGC

2b) were prepared by the acid-catalyzed exchange redctioh ﬁ_N X ﬁ—N

the 2-acetoxy-2-methoxy analogu® (vith 1-phenyl-2-propen- 1 2

1-ol and with cinnamyl alcohol, respectively, Scheme 2. Ther- a: X=Ph, Y=H: b: X=H, Y=Ph

molysis of2 in benzene (sealed tube) at 1’ afforded the esters
(6), Scheme 3. Botl2a and2b afforded6a and6b in 2:1 and Scheme 3
1:2 ratio, respectively (total yields 60%, isolated).

; X " o]
These results might be accounted for with competitive [1,2]- A MeO__ O v

migrations and [2,3]-sigmatropic rearrangements of carbene 2 — ° ﬁx/\\/ - WOJWY

intermediates or with another mechanism, possibly bypassing a 3 é(

carbene entirely. Carbene trapping witBuOH in benzene to a: X=Ph, Y=H: b: X=H, Y=Ph

afford the expectéd” orthoformate7 in 70% yield (isolated),

confirmed that carben@b is indeed formed upon thermolysis of  Scheme 4

2b (Scheme 4). The yields @and7 as a function of fBuOH] Meo. O Ph Voo O on

were shown to be interdependent, Figure 1, indicating that the OXNW Meo\.{o\/\/”“ R

carbene3b is the precursor of radicalé and 5b, a conclusion /}_ o TR tBuoH H oBut

that was supported by interception of the radicals. Thus, :MiQCO

thermolysis ofb in benzene containing TEMPO afforded adducts 2b 3b 7

8 and9, respectively (Scheme 8) The yields of6 dropped with

increased [TEMPQ], but traces of the esters could always be 4 — 1 T T T T 7

detected by GC. That is not surprising because TEMPO should
not trap caged radical pairs and because TEMPO adducts of
radicals can regenerate those radicals upon hetting.
“f3-Scissions” of alkylidenes to an alkyl radical and an
unsaturated radical, analogous to the demonstrated fragmentations
of Scheme 1, are very rdfefor either carbenes with a triplet
ground state or for ground-state singlets with a readily accessible
triplet state. Ring opening of cyclic oxacarbenes to acyl alkyl
biradicals (dotted arrow, Scheme 6) has been propdsédand
biradical combination, either from the photoreaction of cyclobutan-
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9 planar singlet ground state and the nonplanar triplet state of ca.
76 kcal mof? (in dimethoxycarbene¥. Thus the triplet mech-
Scheme 6 anism is most unlikely. Moreover, it is difficult to accommodate

the observed preference for the es@itiiat is most closely related
to the geometry of the starting carbene with a triplet mechanism.
That preference, although it is not understood at this time, implies
very fast coupling, competitive with separation by diffusion. The
diethoxycarbene from a similar precursor afforded ethylene (1.5 [2,3]-Wittig rearrangement (Scheme 8), which occurs with partial
parts) and ethane (1 part) out of 51.5 parts of identified gaseousretention of configuratiod!~3 is reminiscent of the “memory
products. Ethylene and ethane were attributed to ethyl radicalseffect” observed here.
formed from diethoxycarbene, although neither the radical nor  There have been only a few theoretical investigations of the
the carbene were trappétl. Carbenes3b, on the other hand,  mechanism by which dialkoxycarbenes dissociate into radical
afford esters as major products (60%, isol) and trapping of the pairs1>3* Computation of the singlet and triplet potential energy
carbene with-BuOH and of radicals with TEMPO established surfaces of carben@b is not possible at a currently reasonable
that6 are derived from the sequence oxadiazolinalialkoxy- cost, but calculations with the model system, £#€CHCH,O-
carbene— radicals— esters. A further indicator of radical (HO)C:, are in progress.
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